Journal of Cardiology & Cardiovascular Surgery scientific, open-access, double-blind peer-reviewed journal covering a wide spectrum of topics in cardiology and cardiovascular surgery. This journal is indexed by indices that are considered international scientific journal indices (DRJI, ESJI, OAJI, etc.). According to the current Associate Professorship criteria, it is within the scope of International Article 1-d. Each article published in this journal corresponds to 5 points.

EndNote Style
Original Article
May high blood viscosity predict cardiac involvement in COVID-19 patients?
Aims: Assessing the effects of whole blood viscosity (WBV) on prognosis and deterioration in cardiac parameters in COVID-19 patients after recovery using cardiac magnetic resonance imaging (CMRI) and echocardiography is the purpose of this study.
Methods: The study involved 70 patients. Patients who had COVID-19 pneumonia were admitted to the hospital. All patients met the eligibility criteria if they remained symptom-free of respiratory and cardiac symptoms and had negative swab test results at the end of the isolation period, for at least two weeks following the positive swab test result. Transthoracic echocardiography was performed within 24 hours prior to CMRI. WBV was measured in centipoises (cP) at 208 seconds-1 shear rate. The median value of WBV was calculated for the entire study population, which was subsequently utilized to divide the population into two subgroups. These were designated as high WBV and low WBV subgroups.
Results: Elevated levels of hemoglobin, hematocrit, total protein, C-reactive protein, D-dimer, and fibrinogen were observed in individuals with high WBV. Conversely, TAPSE, S, and FAC were notably reduced in those with high WBV. Notably, CMRI revealed significant increases in native T1, native T2 mapping signal, and extracellular volume among patients with high WBV. Furthermore, in individuals with high WBV, there was a significant decrease in right ventricle stroke volume and right ventricle ejection fraction, accompanied by a notable increase in right ventricle end-systolic volume.
Conclusion: WBV values measured during hospital admission may have early and late prognostic importance for COVID-19 infection.

1. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortalityin hospitalized patients with COVID-19 in Wuhan, China. JAMACardiol. 2020;5(7):802-810. doi: 10.1001/jamacardio.2020.0950
2. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fataloutcomes of patients with coronavirus disease 2019 (COVID-19). JAMACardiol. 2020;5(7):811-818. doi: 10.1001/jamacardio.2020.1017
3. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in apatient with coronavirus disease 2019 (COVID-19). JAMA Cardiol.2020;5(7):819-824. doi: 10.1001/jamacardio.2020.1096
4. Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression inhuman heart indicates new potential mechanism of heart injury amongpatients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-1100. doi: 10.1093/cvr/cvaa078
5. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection andendotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418. doi:10.1016/S0140-6736(20)30937-5
6. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascularsystem. Nat Rev Cardiol. 2020;17(5):259-260. doi: 10.1038/s41569-020-0360-5
7. Friedrich MG, Sechtem U, Schulz-Menger J, et al. InternationalConsensus Group on Cardiovascular Magnetic Resonance inMyocarditis. Cardiovascular magnetic resonance in myocarditis: AJACC White Paper. J Am Coll Cardiol. 2009;53(17):1475-1487. doi:10.1016/j.jacc.2009.02.007
8. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascularmagnetic resonance in nonischemic myocardial inflammation: expertrecommendations. J Am Coll Cardiol. 2018;72(24):3158-3176. doi:10.1016/j.jacc.2018.09.072
9. Kammerlander AA, Marzluf BA, Zotter-Tufaro C, et al. T1Mapping by CMR imaging: from histological validation to clinicalimplication. JACC Cardiovasc Imaging. 2016;9(1):14-23. doi: 10.1016/j.jcmg.2015.11.002
10. Huang L, Zhao P, Tang D, et al. Cardiac involvement in patientsrecovered from COVID-2019 identified using magnetic resonanceimaging. JACC Cardiovasc Imaging. 2020;13(11):2330-2339. doi:10.1016/j.jcmg.2020.05.004
11. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascularmagnetic resonance imaging in patients recently recovered fromcoronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265-1273. doi: 10.1001/jamacardio.2020.3557
12. Paternoster G, Bertini P, Innelli P, et al. Right ventricular dysfunctionin patients with COVID-19: a systematic review and meta-analysis.J Cardiothorac Vasc Anesth. 2021;35(11):3319-3324. doi: 10.1053/j.jvca.2021.04.008
13. Lazzeri C, Bonizzoli M, Batacchi S, Peris A. Echocardiographicassessment of the right ventricle in COVID -related acute respiratorysyndrome. Intern Emerg Med. 2021;16(1):1-5. doi:10.1007/s11739-020-02494-x
14. Ekizler FA, Cay S, Tak BT, et al. Usefulness of the whole blood viscosityto predict stent thrombosis in ST-elevation myocardial infarction.Biomark Med. 2019;13(15):1307-1320. doi: 10.2217/bmm-2019-0246
15. Yildirim A, Kucukosmanoglu M, Koyunsever NY, Cekici Y, BelibagliMC, Kilic S. Relationship between blood viscosity and no-reflowphenomenon in ST-segment elevation myocardial infarction performedin primary percutaneous coronary interventions. Biomark Med.2021;15(9):659-667. doi: 10.2217/bmm-2020-0772
16. Çınar T, Şaylık F, Akbulut T, et al. The association between whole bloodviscosity and high thrombus burden in patients with non-ST elevationmyocardial infarction. Kardiol Pol. 2022;80(4):429-435. doi: 10.33963/KP.a2022.0043
17. Tekin Tak B, Ekizler FA, Cay S, et al. Relationship between apical thrombusformation and blood viscosity in acute anterior myocardial infarctionpatients. Biomark Med. 2020;14(3):201-210. doi: 10.2217/bmm-2019-0483
18. Aksu E. Is it possible to estimate the mortality risk in acute pulmonaryembolism by means of novel predictors? A retrospective study. Turkish JVasc Surg. 2021;30(1):27-34. doi: 10.9739/tjvs.2021.836
19. Antonova N, Velcheva I. Hemorheological disturbances andcharacteristic parameters in patients with cerebrovascular disease. ClinHemorheol Microcirc. 1999;21(3-4):405-408.
20. Mitchell C, Rahko PS, Blauwet LA, et al. Guidelines for performing acomprehensive transthoracic echocardiographic examination in adults:recommendations from the American Society of Echocardiography. JAm Soc Echocardiogr. 2019;32(1):1-64. doi: 10.1016/j.echo.2018.06.004
21. Chang WT, Toh HS, Liao CT, Yu WL. Cardiac involvement ofCOVID-19: a comprehensive review. Am J Med Sci. 2021;361(1):14-22.doi:10.1016/j.amjms.2020.10.002
22. Ceyhun G, Birdal O. Relationship between whole blood viscosity andlesion severity in coronary artery disease. Int J Angiol. 2021;30(2):117-121. doi:10.1055/s-0040-1720968
23. Lowe GD, Drummond MM, Lorimer AR, et al. Relation betweenextent of coronary artery disease and blood viscosity. Br Med J.1980;280(6215):673-674. doi: 10.1136/bmj.280.6215.673
24. Cekirdekci EI, Bugan B. Whole blood viscosity in microvascular anginaand coronary artery disease: significance and utility. Rev Port Cardiol(English Edition). 2020;39(1):17-23. doi: 10.1016/j.repc.2019.04.008
25. Hudak ML, Koehler RC, Rosenberg AA, Traystman RJ, Jones JrMD. Effect of hematocrit on cerebral blood flow. Am J Physiol.1986;251(1):H63-H70. doi: 10.1152/ajpheart.1986.251.1.H63
26. Uzunget SB, Sahin KE. Another possible determinant for ischemicstroke with nonvalvular atrial fibrillation other than conventionaloral anticoagulant treatment: the relationship between whole bloodviscosity and stroke?. J Stroke Cerebrovasc Dis. 2022;31(9):106687. doi:10.1016/j.jstrokecerebrovasdis.2022.106687
27. Li H, Zhu H, Yang Z, Tang D, Huang L, Xia L. Tissue characterization bymapping and strain cardiac MRI to evaluate myocardial inflammationin fulminant myocarditis. J Magn Reson Imaging. 2020;52(3):930-938.doi:10.1002/jmri.27094
28. Dolan RS, Rahsepar AA, Blaisdell J, et al. Multiparametric cardiacmagnetic resonance imaging can detect acute cardiac allograft rejectionafter heart transplantation. JACC Cardiovasc Imaging. 2019;12(8 Pt 2):1632-1641. doi: 10.1016/j.jcmg.2019.01.026
29. Hinojar R, Varma N, Child N, et al. T1 mapping in discrimination ofhypertrophic phenotypes: hypertensive heart disease and hypertrophiccardiomyopathy: findings from the international T1 multicentercardiovascular magnetic resonance study. Circ Cardiovasc Imaging.2015;8(12):e003285. doi: 10.1161/CIRCIMAGING.115.003285
30. Park JF, Banerjee S, Umar S. In the eye of the storm: the rightventricle in COVID-19. Pulm Circ. 2020;10(3):2045894020936660.doi:10.1177/2045894020936660
31. Grasselli G, Tonetti T, Protti A, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentreprospective observational study. Lancet Respir Med. 2020;8(12):1201-1208. doi: 10.1016/S2213-2600(20)30370-2
32. Bleakley C, Singh S, Garfield B, et al. Right ventricular dysfunctionin critically ill COVID-19 ARDS. Int J Cardiol. 2021;327:251-258. doi:10.1016/j.ijcard.2020.11.043
Volume 2, Issue 1, 2024
Page : 9-14